Abstract

In atrial myocytes, an initial exposure to isoproterenol (ISO) acts via cAMP to mediate a subsequent acetylcholine (ACh)-induced activation of ATP-sensitive K(+) current (I(K,ATP)). In addition, beta-adrenergic receptor (beta-AR) stimulation activates nitric oxide (NO) release. The present study determined whether the conditioning effect of beta-AR stimulation acts via beta(1)- and/or beta(2)-ARs and whether it is mediated via NO signaling. 0.1 microM ISO plus ICI 118,551 (ISO-beta(1)-AR stimulation) or ISO plus atenolol (ISO-beta(2)-AR stimulation) both increased L-type Ca(2+) current (I(Ca,L)) markedly, but only ISO-beta(2)-AR stimulation mediated ACh-induced activation of I(K,ATP). 1 microM zinterol (beta(2)-AR agonist) also increased I(Ca,L) and mediated ACh-activated I(K,ATP). Inhibition of NO synthase (10 microM L-NIO), guanylate cyclase (10 microM ODQ), or cAMP-PKA (50 microM Rp-cAMPs) attenuated zinterol-induced stimulation of I(Ca,L) and abolished ACh-activated I(K,ATP). Spermine-NO (100 microM; an NO donor) mimicked beta(2)-AR stimulation, and its effects were abolished by Rp-cAMPs. Intracellular dialysis of 20 microM protein kinase inhibitory peptide (PKI) abolished zinterol-induced stimulation of I(Ca,L). Measurements of intracellular NO ([NO](i)) using the fluorescent indicator DAF-2 showed that ISO-beta(2)-AR stimulation or zinterol increased [NO](i). L-NIO (10 microM) blocked ISO- and zinterol-induced increases in [NO](i). ISO-beta(1)-AR stimulation failed to increase [NO](i). Inhibition of G(i)-protein by pertussis toxin significantly inhibited zinterol-mediated increases in [NO](i). Wortmannin (0.2 microM) or LY294002 (10 microM), inhibitors of phosphatidylinositol 3'-kinase (PI-3K), abolished the effects of zinterol to both mediate ACh-activated I(K,ATP) and stimulate [NO](i). We conclude that both beta(1)- and beta(2)-ARs stimulate cAMP. beta(2)-ARs act via two signaling pathways to stimulate cAMP, one of which is mediated via G(i)-protein and PI-3K coupled to NO-cGMP signaling. Only beta(2)-ARs acting exclusively via NO signaling mediate ACh-induced activation of I(K,ATP). NO signaling also contributes to beta(2)-AR stimulation of I(Ca,L). The differential effects of beta(1)- and beta(2)-ARs can be explained by the coupling of these two beta-ARs to different effector signaling pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.