Abstract
SummaryObjectiveTo determine if models of human 'receptive' and 'non-receptive endometrium' differ in their responses to nitric oxide (NO) supplementation by measuring the levels of the enzymes of the endocannabinoid system (ECS) (fatty acid amide hydrolase (FAAH) and N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD)), which control the 'anandamide tone' essential for successful pregnancy.DesignA study of FAAH and NAPE-PLD expression (using human endometrium) through the menstrual cycle and an in vitro using a model of 'receptive' (Ishikawa) and 'non-receptive' (HEC-1A) human endometrial cell lines treated with the NO-donating compound S-nitroso-N-acetylpenicillamine (SNAP).ResultsImmunoreactivity measured by optimised H-score for both FAAH and NAPE-PLD was reduced in secretory (receptive) endometrium compared to proliferative (non-receptive) endometrium (P = 0.0009 and <0.0001, respectively). FAAH and NAPE transcript levels were significantly higher in untreated Ishikawa cells than in HEC-1A cells (P = 0.0228 and 0.0001, respectively). Treatment of cultures with SNAP resulted in an increase in the amount of FAAH mRNA produced by Ishikawa cells and a decrease in NAPE-PLD mRNA. No effect of SNAP was observed in HEC-1A cells. Similarly, FAAH protein was significantly decreased in endometria representative of the receptive endometrium.ConclusionThese data suggest that NO most likely affects the expression of ECS enzymes in the implantation site of a receptive endometrium; a phenomenon not seen in a non-receptive endometrium. These effects are most marked with FAAH expression, suggesting that FAAH may play the more critical role in ensuring the correct 'anandamide tone' for successful embryo implantation than NAPE-PLD.Lay summaryEmbryo implantation into the wall of the uterus is only successful when the inner wall of the uterus (the endometrium) is ‘receptive’, because if it is ‘non-receptive’, implantation will fail. Previous work showed that enzymes of the 'endocannabinoid system' are critical for implantation by maintaining the correct level of a fat called anandamide. This is by balancing its synthesis (by N-acylphosphatidylethanolamine specific phospholipase D, NAPE-PLD) and degradation (by fatty acid amide hydrolase, FAAH). Using immortalised cell lines as models of ‘receptive’ and ‘non-receptive’ human endometrium, we demonstrate a key stimulator of implantation, nitric oxide, has a positive effect on implantation by both increasing the mRNA levels of the degrading enzyme (FAAH) and decreasing the expression of the synthesising enzyme (NAPE-PLD). These effects are most marked with the degrading enzyme, suggesting that FAAH plays a more critical role than NAPE-PLD in ensuring the correct 'anandamide tone' for successful embryo implantation.
Highlights
For several decades immense interest has centred on factors that influence the process of early pregnancy events
Using immortalised cell lines as models of ‘receptive’ and ‘non-receptive’ human endometrium, we demonstrate a key stimulator of implantation, nitric oxide, has a positive effect on implantation by both increasing the mRNA levels of the degrading enzyme (FAAH) and decreasing the expression of the synthesising enzyme (NAPE-PLD)
When the expression of NAPE-PLD or FAAH was categorised based on whether the endometria were either 'receptive' or 'non-receptive', the same phenomenon was identified (Fig. 2). Both FAAH and NAPE-PLD immunoreactivities were reduced in the glandular epithelial cells of receptive endometria (P < 0.0001) when compared to that of the non-receptive endometria
Summary
For several decades immense interest has centred on factors that influence the process of early pregnancy events. Prostaglandins, homeobox genes, endocannabinoids (such as anandamide), integrins and cytokines have all been identified as playing important roles in blastocyst implantation (Melford et al 2014). Many of these factors interact with each other to either support or hinder successful implantation. 2008, Maccarrone 2009, Bambang et al 2010) This class of molecules (endocannabinoids) are unsaturated fatty acid derivatives of arachidonic acid that act as endogenous ligands for cannabinoid receptors that bind exocannabinnoids/phytocannabinoids from the Cannabis sativa plant. Only AEA has been shown to play a key role in human embryo implantation (Maia et al 2020), it is suspected that both
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have