Abstract

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with several human malignancies. KSHV lytic replication promotes the spread of infection and progression of KSHV-associated malignancies; however, the mechanism regulating KSHV lytic replication remains unclear. In this study, we investigated the role of nitric oxide (NO) in KSHV lytic replication. In the TREx BCBL1-RTA KSHV lytic replication cell system, induction of KSHV lytic replication increased intracellular and extracellular NO. Chemical inhibition of NO production resulted in a lower level of KSHV lytic replication as shown by a reduced level of infectious virions, and decreased levels of viral lytic transcripts and proteins. In a second KSHV lytic replication system of iSLK-RGB-BAC16 cells, we confirmed that KSHV lytic replication increased NO production. Chemical inhibition of NO production resulted in reduced numbers of cells expressing enhanced green fluorescent protein and blue fluorescent protein, two reporters that closely track the expression of KSHV early and late genes, respectively. Consistent with these results, inhibition of NO production resulted in reduced levels of infectious virions, and viral lytic transcripts and proteins. Importantly, exogenous addition of a NO donor was sufficient to enhance the full KSHV lytic replication program. These results demonstrate that NO is required for efficient KSHV lytic replication, and NO playsa crucial role in the KSHV life cycle and KSHV-induced malignancies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.