Abstract
In response to flooding/waterlogging, plants develop various anatomical changes including the formation of lysigenous aerenchyma for the delivery of oxygen to roots. Under hypoxia, plants produce high levels of nitric oxide (NO) but the role of this molecule in plant-adaptive response to hypoxia is not known. Here, we investigated whether ethylene-induced aerenchyma requires hypoxia-induced NO. Under hypoxic conditions, wheat roots produced NO apparently via nitrate reductase and scavenging of NO led to a marked reduction in aerenchyma formation. Interestingly, we found that hypoxically induced NO is important for induction of the ethylene biosynthetic genes encoding ACC synthase and ACC oxidase. Hypoxia-induced NO accelerated production of reactive oxygen species, lipid peroxidation, and protein tyrosine nitration. Other events related to cell death such as increased conductivity, increased cellulase activity, DNA fragmentation, and cytoplasmic streaming occurred under hypoxia, and opposing effects were observed by scavenging NO. The NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt) and ethylene biosynthetic inhibitor CoCl2 both led to reduced induction of genes involved in signal transduction such as phospholipase C, G protein alpha subunit, calcium-dependent protein kinase family genes CDPK, CDPK2, CDPK 4, Ca-CAMK, inositol 1,4,5-trisphosphate 5-phosphatase 1, and protein kinase suggesting that hypoxically induced NO is essential for the development of aerenchyma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.