Abstract
Tumor cells undergoing immunogenic cell death (ICD) release immunogenic damage-associated molecular patterns (DAMPs) to trigger a long-term protective antitumor response. ICD can be induced by certain pathogens, chemotherapeutics, and physical modalities. In this work, we demonstrate that a gaseous molecule, specifically nitric oxide (NO), can induce a potent ICD effect. NO exerts cytotoxic effects that are accompanied by the emission of DAMPs based on the endoplasmic reticulum stress and mitochondrial dysfunction pathways. Released DAMPs elicit immunological protection against a subsequent rechallenge of syngeneic tumor cells in immunocompetent mice. We prepare polynitrosated polyesters with high NO storage capacity through a facile polycondensation reaction followed by a postsynthetic modification. The polynitrosated polyesters-based NO nanogenerator (NanoNO) that enables efficient NO delivery and controlled NO release in tumors induces a sufficient ICD effect. In different immune-intact models of tumors, the NanoNO exhibits significant tumor growth suppression and increases the local dose of immunogenic signals and T cell infiltrations, ultimately prolonging survival. In addition, the NanoNO synergizes with the PD-1 blockade to prevent metastasis. We conclude not only that NO is a potent ICD inducer for cancer immunotherapy but also that it expands the range of ICD inducers into the field of gaseous molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.