Abstract
We previously showed that the major Zn-binding protein, metallothionein (MT) is a critical target for nitric oxide (NO) with resultant increases in labile Zn. We now show that NO donors also affected the activity of the metal responsive transcription factor MTF-1 that translocates from the cytosol to the nucleus in response to physiologically relevant increases in intracellular Zn and transactivates MT gene expression. Exposing mouse lung endothelial cells (MLEC) to ZnCl 2 or the NO donor, S-Nitroso- N-acetylpenicillamine (SNAP, 200 μM), caused nuclear translocation of a reporter molecule consisting of enhanced green fluorescent protein (EGFP) fused to MTF-1 (pEGFP-MTF-1). In separate experiments, NO donors induced increases in MT protein levels (Western blot). In contrast, NO did not cause nuclear translocation of EGFP-MTF-1 in MLEC from MT knockouts, demonstrating a central role for MT in mediating this response. These data suggest that S-nitrosation of Zn-thiolate clusters in MT and subsequent alterations in Zn homeostasis are participants in intracellular NO signaling pathways affecting gene expression.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have