Abstract

Cardiovascular implants must resist thrombosis and intimal hyperplasia, but they are prone to such patency limiting conditions during graft implantation and prior to endothelialisation. Nitric oxide (NO) released from the endothelium has a complex protective role in the cardiovascular system, and this study has addressed: (1) in situ NO release profiles from S-nitrosothiols ((S-Nitroso-N-acetylpenicillamine (SNAP) and (S-Nitrosoglutathione (GSNO)) incorporated into polyhedral oligomeric silsesquioxanepoly(carbonate-urea)urethane (POSS-PCU) coronary artery bypass grafts (CABG) in a physiological pulsatile flow, and (2) the determination of their interaction with endothelial progenitor cells (EPCs), smooth muscle cells, platelets, whole blood kinetics. It was found that 1, 2, and 3wt% SNAP/GSNO incorporated into POSS-PCU-CABG successfully eluted NO, but optimal elution was evident with 2%-SNAP-POSS-PCU. NO release determined under static conditions using the Griess assay, and in situ measurements under pulsatile flow using amperometric probe was found to differ, thus confirming the significance of monitoring NO-elution under haemodynamic conditions.2%-SNAP-POSS-PCU demonstrated anti-thrombogenic kinetics through thromboelastography measurements, while metabolic activity using Alamar Blue™ assay and scanning electron microscopy demonstrated greater adhesion of EPCs and reduced adhesion of platelets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.