Abstract

Nitric oxide (NO), a mediator of biological functions, has an antimicrobial activity against a variety of pathogens including viruses. In this study, we found that a constitutive, low level of inducible NO synthase (iNOS) mRNA was expressed in the EBV-infected gastric tissue-derived GT38 and GT39 cell lines, by analysis with the reverse transcription–polymerase chain reaction (RT–PCR) and Southern blotting. Treatment of these cells with a specific NOS inhibitor, NG-monomethyl-l-arginine (l-NMMA), induced the immediate-early, EBV transactivator gene BZLF1 protein ZEBRA, suggesting a significant increase in EBV reactivation by l-NMMA. Northern blotting demonstrated that BZLF1 and BRLF1 transcripts were also induced by 12-O-tetradecanoylphorbol-13 acetate (TPA). Meanwhile, constitutive expression of iNOS mRNA was inhibited by TPA. l-NMMA also enhanced TPA-induced expression of the BZLF1 gene. On the other hand, a NO donor, S-nitroso-N-acetylpenicillamine (SNAP), which releases NO in an aqueous solution, inhibited the TPA-induced BZLF1 gene expression in a dose-dependent manner at both mRNA and protein levels. These results demonstrated that NO is a regulatory factor in maintaining virus latency via inhibiting EBV reactivation in the infected epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.