Abstract

Nitric oxide (NO) is considered a key regulator of plant developmental processes and defense, although the mechanism and direct targets of NO action remain largely unknown. We used phenotypic, cellular, and genetic analyses in Arabidopsis thaliana to explore the role of NO in regulating primary root growth and auxin transport. Treatment with the NO donors S-nitroso-N-acetylpenicillamine, sodium nitroprusside, and S-nitrosoglutathione reduces cell division, affecting the distribution of mitotic cells and meristem size by reducing cell size and number compared with NO depletion by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, genetic backgrounds in which the endogenous NO levels are enhanced [chlorophyll a/b binding protein underexpressed 1/NO overproducer 1 (cue1/nox1) mirror this response, together with an increased cell differentiation phenotype. Because of the importance of auxin distribution in regulating primary root growth, we analyzed auxin-dependent response after altering NO levels. Both elevated NO supply and the NO-overproducing Arabidopsis mutant cue1/nox1 exhibit reduced expression of the auxin reporter markers DR5pro:GUS/GFP. These effects were accompanied by a reduction in auxin transport in primary roots. NO application and the cue1/nox1 mutation caused decreased PIN-FORMED 1 (PIN1)-GFP fluorescence in a proteasome-independent manner. Remarkably, the cue1/nox1-mutant root phenotypes resemble those of pin1 mutants. The use of both chemical treatments and mutants with altered NO levels demonstrates that high levels of NO reduce auxin transport and response by a PIN1-dependent mechanism, and root meristem activity is reduced concomitantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.