Abstract

We have earlier shown that the treatment of A10 vascular smooth muscle cells with S-nitroso-N-acetyl-penicillamine (SNAP); nitric oxide donor (NO) for 24 h decreased the expression of natriuretic peptide receptor C (NPR-C) and adenylyl cyclase signaling. The present study was undertaken to examine the implication of different signaling mechanisms in a NO-induced response. The treatment of A10 vascular smooth muscle cells with SNAP decreased the expression of NPR-C and G(i)alpha proteins in a time-dependent manner. The expression of G(i)alpha proteins was decreased at 6 h, whereas the expression of NPR-C was attenuated at 2 h. The NPR-C-mediated inhibition of adenylyl cyclase was attenuated (approximately 50%) after 2 h of treatment and was completely abolished after 6 h of treatment. The decreased expression of NPR-C and NPR-C-mediated attenuation of adenylyl cyclase after 2 h of treatment was reversed to control levels by PD-98059, a MEK inhibitor. SNAP also modulated the ERK1/2 phosphorylation in a time-dependent manner; an increase was observed up to 2 h, and, thereafter, the ERK1/2 phosphorylation was decreased. On the other hand, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and KT-5823 inhibitor of soluble guanylyl cyclase and protein kinase G, respectively, and Mn(III)tetrakis(4-benzoic acid)porphyrin, a scavenger of peroxynitrite, were unable to restore the SNAP-induced decreased expression of NPR-C protein and increased ERK1/2 phosphorylation to control levels. However, the decreased levels of phosphorylated ERK1/2 and G(i)alpha proteins were restored to control levels by 8-bromo-cAMP. These results indicate that a temporal relationship follows between a NO-induced decreased expression of NPR-C and G(i)alpha proteins. The decreased expression of NPR-C is mediated through cGMP-independent but MAPK-dependent pathway, whereas NO-induced decreased levels of cAMP may contribute to the decreased activation of MAPK and thereby decreased the expression of G(i)alpha proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call