Abstract
Nitric oxide (NO) is a ubiquitous cell signaling molecule which mediates widespread and diverse processes in the cell. These NO dependent effects often involve activation (e.g. NO binding to the heme group of soluble guanylyl cyclase for cGMP production) or inactivation (e.g. S-nitrosation) of protein targets. We studied the effect of NO and heme-NO on the transmembrane signaling enzyme NADPH oxidase 5 (NOX5), a heme protein which produces superoxide in response to increases in intracellular calcium. We found that treatment with NO donors increases NOX5 activity through heme-dependent effects, and that this effect could be recapitulated by the addition of heme-NO. This work adds to our understanding of NOX5 regulation in the cell but also provides a framework for understanding how NO could cause widespread changes in hemeprotein activity based on different affinities for heme v. heme-NO, and helps explain the opposing roles NO plays in activation and inactivation of hemeprotein targets.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have