Abstract

Engineering bulk defects and surface modifications are effective strategies to facilitate carriers separation and achieve high-efficiency photocatalysis, but it is challenging to realize the integrated regulation of the two aspects. Herein, we report an S-scheme heterojunction with tunable oxygen vacancies (Vo) via in-situ growth of InVO4 nanobelts on protonated ultrathin C3N4 nanosheets (p-C3N4/InVO4) assisted by nitric acid for efficient CO2 photoreduction. The nitric acid plays three roles in the synthetic process: providing protonation sources for the p-C3N4, assisting the growth of InVO4 nanobelts on p-C3N4, and facilitating the formation of Vo in InVO4. Intriguingly, the Vo content is tuned by varying the amount of C3N4 which reduces free H+ concentration and increases the electron density around V in VO43-, leading to a tade-off effect on Vo formation and thus a volcano-shaped evolution profile of Vo content. The introduction of Vo reduces the band gap of InVO4 and enhances the n-type conductivity, expediting the interfacial charge transfer in terms of the S-scheme pathway. Besides, the protonation of C3N4 improves electrical conductivity, promotes the adsorption and activation of CO2 molecules, and thermodynamically favours the conversion to CO. Due to the composite effect of Vo and protonation in the S-scheme system, the optimized p-C3N4/InVO4 hetero-nanosheet displays dramatically boosted photocatalytic CO2 reduction activity with a CO production rate of 14.05 μmol g-1 h−1, 6.03 and 3.23 times higher than that of bare InVO4 and p-C3N4, respectively. This work provides new platforms for the development of efficient photocatalysts by integrated refining of structure defects and surface modification in constructing heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.