Abstract

Metalloporphyrin compounds have excellent electron transfer and visible light absorption ability, demonstrating broad application prospects in the field of photocatalysis. In this work, the nitrogen vacancies (NVs) were successfully introduced into zinc porphyrin (ZnTCPP) ultrathin nanosheets through surface N2 plasma treatment, which is environmentally friendly and can react in low temperatures. Furthermore, the prepared nitrogen vacancies-zinc porphyrin (NVs-ZnTCPP) materials exhibited excellent photocatalytic CO2 reduction activity and selectivity, specifically, the CO production rate of ZnTCPP-1 (N2 plasma treatment, 1 min) achieved as high as 12.5 µmol g–1h−1, which is about 2.7 times greater than that of untreated ZnTCPP. Based on the experimental and density functional theory calculation (DFT) results, it is found that the promoted photocatalytic performance of NVs-ZnTCPP could be mainly attributed to nitrogen vacancy-induced spin polarization by reducing the reaction barriers and inhibiting the recombination of photoexcited carriers. This work provides a new perspective for the construction of vacancy-based metalloporphyrin, and further explores the intrinsic mechanism between the electron spin property and the performance of the photocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.