Abstract
During the urine storage phase, tonically contracting urethral musculature would have a higher energy consumption than bladder muscle that develops phasic contractions. However, ischaemic dysfunction is less prevalent in the urethra than in the bladder, suggesting that urethral vasculature has intrinsic properties ensuring an adequate blood supply. Diameter changes in rat or mouse urethral arterioles were measured using a video-tracking system. Intercellular Ca2+ dynamics in arteriolar smooth muscle (SMCs) and endothelial cells were visualised using NG2- and parvalbumin-GCaMP6 mice, respectively. Fluorescence immunohistochemistry was used to visualise the perivascular innervation. In rat urethral arterioles, sympathetic vasoconstrictions were predominantly suppressed by α,β-methylene ATP (10μM) but not prazosin (1μM). Tadalafil (100nM), a PDE5 inhibitor, diminished the vasoconstrictions in a manner reversed by N-ω-propyl-l-arginine hydrochloride (l-NPA, 1μM), a neuronal NO synthesis (nNOS) inhibitor. Vesicular acetylcholine transporter immunoreactive perivascular nerve fibres co-expressing nNOS were intertwined with tyrosine hydroxylase immunoreactive sympathetic nerve fibres. In phenylephrine (1μM) pre-constricted rat or mouse urethral arterioles, nerve-evoked vasodilatations or transient SMC Ca2+ reductions were largely diminished by l-nitroarginine (l-NA, 10μM), a broad-spectrum NOS inhibitor, but not by l-NPA. The CGRP receptor antagonist BIBN-4096 (1μM) shortened the vasodilatory responses, while atropine (1μM) abolished the l-NA-resistant transient vasodilatory responses. Nerve-evoked endothelial Ca2+ transients were abolished by atropine plus guanethidine (10μM), indicating its neurotransmitter origin and absence of non-adrenergic non-cholinergic endothelial NO release. In urethral arterioles, NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions pre- and post-synaptically to restrict arteriolar contractility. KEY POINTS: Despite a higher energy consumption of the urethral musculature than the bladder detrusor muscle, ischaemic dysfunction of the urethra is less prevalent than that of the bladder. In the urethral arterioles, sympathetic vasoconstrictions are predominately mediated by ATP, not noradrenaline. NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions by its pre-synaptic inhibition of sympathetic transmission as well as post-synaptic arteriolar smooth muscle relaxation. Acetylcholine released from parasympathetic nerves contributes to endothelium-dependent, transient vasodilatations, while CGRP released from sensory nerves prolongs NO-mediated vasodilatations. PDE5 inhibitors could be beneficial to maintain and/or improve urethral blood supply and in turn the volume and contractility of urethral musculature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.