Abstract

Nitric oxide-derived oxidants such as nitrogen dioxide and peroxynitrite have been receiving increasing attention as mediators of nitric oxide toxicity. Indeed, nitrated and nitrosated compounds have been detected in biological fluids and tissues of healthy subjects and in higher yields in patients under inflammatory or infectious conditions as a consequence of nitric oxide overproduction. Among them, nitrated lipids have been detected in vivo. Here, we confirmed and extended previous studies by demonstrating that nitrolinoleate, chlolesteryl nitrolinoleate, and nitrohydroxylinoleate induce vasorelaxation in a concentration-dependent manner while releasing nitric oxide that was characterized by chemiluminescence-and EPR-based methodologies. As we first show here, diffusible nitric oxide production is likely to occur by isomerization of the nitrated lipids to the corresponding nitrite derivatives that decay through homolysis and/or metal ion/ascorbate-assisted reduction. The homolytic mechanism was supported by EPR spin-trapping studies with 3,5-dibromo-4-nitrosobenzenesulfonic acid that trapped a lipid-derived radical during nitrolinoleate decomposition. In addition to provide a mechanism to explain nitric oxide production from nitrated lipids, the results support their role as endogenous sources of nitric oxide that may play a role in endothelium-independent vasorelaxation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.