Abstract

The antioxidant and anti-inflammatory effects of electrophilic nitrated fatty acid (NFA); 10-nitrooleate, have been reported. The present study investigated whether 10-nitrooleate has a protective role against hyperoxic-induced acute lung injury (HALI). Using a C57BL/6 mice model of HALI, we investigated the protective effect of 10-nitrooleate. C57BL/6 mice were administered with NFA intratracheally, exposed to hyperoxia for 48 h to induce HALI, and kept at room air for 24 h. Bronchoalveolar lavage (BAL) fluid and lung samples were collected after 24 h of post hyperoxia to analyze markers associated with HALI. Intratracheal (IT) and intraperitoneal (IP) administration of NFA notably attenuated hyperoxia-induced infiltration of inflammatory cells, alveolar-capillary leakage, upregulation of proinflammatory cytokine levels (IL-6 and TNFα) into the BAL fluid, and resolution of inflammation in the lung. Western blot analyses showed that 10-nitrooleate reduced the expression of the inflammatory transcription factor NFκB p65 subunit and increased antioxidant proteins HO-1 and NQO1 expression in the lung tissues compared to vehicle-treated animals. Moreover, 10-nitrooleate reversed the hyperoxia-induced expression of mitophagy-associated markers (PINK1 and p62/SQSTM1), thereby protecting the HALI/ acute respiratory distress syndrome (ARDS). IT and IP delivery of 10-nitrooleate reduces hyperoxia-induced ALI/ARDS by regulating the antioxidant pathways and restoring the mitochondrial homeostasis by regulating mitophagy. It is suggested that NFAs can be further evaluated as supplementary therapy for critically ill patients like COVID-19/ARDS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call