Abstract

Abstract In this study, the denitrification of nitrate-contaminated groundwater by the heterotrophic denitrification (HD) method was studied to produce drinking water. Preliminary tests were carried out in a denitrification reactor, consisting of an opaque PVC column filled with a plastic packing, and fed with a synthetic solution based on glycerol, in which activated sludge bacteria were added. The performance of the reactor was monitored by measuring physicochemical parameters such as pH, turbidity, nitrates, and nitrites. This monitoring was carried out for different tests within the same reactor to evaluate the adaptation possibilities of the denitrifying bacteria. At the end of each test when the substrate was exhausted, a new synthetic solution was added to the reactor under discontinuous aeration (aeration period = 1 h). The results obtained showed that the nitrate removal efficiency reached a value of 99.42% after 8 h of treatment depending on the adaptation of the denitrifying bacteria. This experiment also showed that the concentration of produced nitrite depends on the aeration mode and it reached a value below the detection limit in the sequential aeration mode after 12 h of treatment under discontinuous aeration (aeration period = 1 h).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call