Abstract
To enhance nitrate removal in constructed wetlands (CWs), a bioelectrochemically-assisted CW (BECW) integrating a three-dimensional biofilm-electrode reactor (3D-BER) into the CW was evaluated for the effectiveness of combined autotrophic and heterotrophic denitrification in the presence of organic matter and applied current. The effects of COD/N ratios on nitrate removal were investigated, and the bacterial communities in the granular active carbon (GAC) and graphite felt (GF) in the reactor’s cathode region were compared. The highest NO3−-N and TN removal efficiencies of 91.3±7.2% and 68.8±7.9% were obtained at the COD/N ratio of 5. According to the results of high-throughput sequencing analysis, sample GAC was enriched with a high abundance of Pseudomonas (17.29%) capable of autotrophic and heterotrophic denitrification, whereas autotrophic bacteria Thiobacillus (43.94%) was predominant in sample GF. The synergy between heterotrophic and autotrophic denitrification bacteria is believed to cause the high and stable nitrogen removal performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.