Abstract

Nitrate pollution in groundwater is a serious problem worldwide, as its concentration in many areas exceeds the WHO-defined drinking water standard (50 mg/L). Hydrogen-oxidizing bacteria (HOB) are a group of microorganisms capable of producing single-cell protein (SCP) using hydrogen and oxygen. Furthermore, HOB can utilize various nitrogen sources, including nitrate. This study developed a novel hybrid biological-inorganic (HBI) system that coupled a new submersible water electrolysis system driven by renewable electricity with HOB fermentation for in-situ nitrate recovery from polluted groundwater and simultaneously upcycling it together with CO2 into single-cell protein. The performance of the novel HBI system was first evaluated in terms of bacterial growth and nitrate removal efficiency. With 5 V voltage applied and the initial nitrate concentration of 100 mg/L, the nitrate removal efficiency of 85.52 % and raw of 47.71 % (with a broad amino acid spectrum) were obtained. Besides, the HBI system was affected by the applied voltages and initial nitrogen concentrations. The water electrolysis with 3 and 4 V cannot provide sufficient H2 for HOB and the removal of nitrate was 57.12 % and 59.22 % at 180 h, while it reached 65.14 % and 65.42 % at 5 and 6 V, respectively. The nitrate removal efficiency reached 58.40 % and 50.72 % within 180 h with 200 and 300 mg/L initial nitrate concentrations, respectively. Moreover, a larger anion exchange membrane area promoted nitrate removal. The monitored of the determination of different forms of nitrogen indicated that around 60 % of the recovered nitrate was assimilated into cells, and 40 % was bio-converted to N2. The results demonstrate a potentially sustainable method for remediating nitrate contaminant in groundwater, upcycling waste nitrogen, CO2 sequestration and valorization of renewable electricity into food or feed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.