Abstract

Over-application of manure to agricultural fields can leach nitrogen below the root zone and contaminate groundwater. The goal of this study was to evaluate the factors affecting the spatial and temporal distribution of nitrate in shallow groundwater following 44 years of manure application to irrigated and non-irrigated long-term test plots. Sampling of 26 wells over an 18-month period revealed high spatial variability of groundwater nitrate concentrations, ranging from <0.1 mg-N/L to 1350 mg-N/L (mean = 118 mg-N/L). The highest concentrations were associated with the highest manure nitrogen loads, longer durations of manure application, and were generally located beneath irrigated land use. Regression modeling confirmed that cumulative manure loading had the greatest control on the spatial distribution of groundwater nitrate. A significant decreasing temporal trend was observed in selected wells downgradient of plots where manure application ceased more than a decade earlier. Isotopic analysis of 15N-NO3 and 18O-NO3 showed that denitrification occurred at 16 well locations, with evidence for dissolved organic carbon as the electron donor. The groundwater nitrate trends observed in this long-term study demonstrate that historical nutrient and water management practices will affect groundwater quality for many decades to come.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call