Abstract

A 10-membered heterocyclic ring system 1,3,8-trisubstituted 2,5,7-trioxo-1,4,8-triazadecane that represents a Ni-to-Ni+ 3-ethylene-bridged partially modified retro-inverso tetrapeptide beta-turn mimetic (EBRIT-BTM) has been designed, synthesized, and structurally analyzed. These compounds utilize an ethylene bridge to replace the COi...HNi + 3 10-membered hydrogen bond of standard beta-turns. The N,N'-ethylene-bridged dimer was obtained in 90% yield by reductive alkylation of phenylalanylamide with a tert-butyl N-(9-fluorenylmethyloxycarbonyl),N-(2-formylmethyl)-glycinate. An orthogonal protection strategy and HATU-mediated couplings allowed efficient stepwise additions of monomeric building blocks leading to a N(i)-to-N(i+3)-ethylene-bridged linear precursor: Further elaboration of the linear precursor generated the ethylene-bridged model compounds (16) and (18) (g, gem-diaminoalkyl; m, malonyl; and r, direction-reversed amino acid residue) in 44 and 39% yields, respectively. The structural features of the two EBRIT-BTM compounds were determined using 1H NMR and extensive computer simulations. The results indicate that the 10-membered rings are conformationally constrained with well-defined structural features and that the three amide bonds in the ring are in the trans orientation. The topological arrangement of the residues in the ring system closely resembles a type II' beta-turn. Transformation of CONH(2) in the N-terminal amino acid residue of 16 into NHCOCH3 in 18 resulted in the formation of a hydrogen bond between the NH of gPhe-COCH3 and the C-terminal carboxyl of Gly, initiating an antiparallel beta-sheet. The formulation of the concept applying a minimalistic structural elaboration approach and the synthetic exploration, together with the conformational analysis, offer a new molecular scaffolding system and a true tetrapeptide secondary structure mimetic that can be used to generate peptidomimetics of biological interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.