Abstract

The efficacy of surface topology and chemistry on the ability for a surface to retain antimicrobial performance via the immobilization of a peptide was evaluated. A nanosecond pulsed laser was used to create oxide films on Ti-6Al-4V and 304L stainless steel. The laser conditions employed created a mudflat cracked surface on titanium, but no cracks on the steel. An antimicrobial peptide, nisin, was infused into the cracked and uncracked oxide surfaces to provide antimicrobial activity against Gram-positive bacteria; Listeria monocytogenes was chosen as the model microorganism. Release tests in distilled water at room temperature show that nisin is slowly liberated from the uncracked stainless steel surface, while there was no evidence of nisin liberation from the cracked titanium alloy surfaces, likely due to immobilization of the peptide into the artificially created micro-cracks on the surface of this alloy. Surfaces treated with nisin became active and exhibit anti-microbial performance against L. monocytogenes; this behavior is mostly retained after scrubbing/washing and simple immersion in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.