Abstract

Harmful bacterial flourish with the increase in environmental pollution and pose a great threat to human health. Thus, developing new and efficient antibacterial materials is imperative to reduce the pollution caused by traditional sterilization materials and improve sterilization efficiency. In this study, a new photocatalytic antibacterial material was developed to achieve an efficient antibacterial effect. Ti3C2Tx@CuS composites were synthesized by simple hydrothermal method, by which copper sulfide (CuS) nanoparticles were anchored on the surface of Ti3C2Tx to sharply improve the photocatalytic its antibacterial ability. Ti3C2Tx@CuS exhibits excellent antibacterial activity against Escherichia coli and Staphylococcus aureus with bactericidal rates of 99.6% and 99.1%, respectively. Photoluminescence spectroscopy (PL), decay time PL, photocurrent test, electrochemical impedance spectroscopy and finite element method showed that the formation of Ti3C2Tx@CuS heterojunction promoted the separation of electrons and holes, improved the electron transport efficiency, and elevated the generation of reactive oxygen species. Moreover, Ti3C2Tx@CuS has a stronger photothermal effect and causes more heat release than CuS to improve antibacterial performance. The Ti3C2Tx@CuS heterojunction has a broad application prospect in the disinfection and antibacterial fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call