Abstract
Synthetic nanomotors have great application potential in deep tissue imaging and tumor treatment due to their active movement ability. Herein, a novel near infrared (NIR) light-driven Janus nanomotor is reported for active photoacoustic (PA) imaging and synergistic photothermal/chemodynamic therapy (PTT/CDT). Au nanoparticles (Au NPs) are sputtered on the half-sphere surface of copper-doped hollow cerium oxide nanoparticles after bovine serum albumin (BSA) modification. Such Janus nanomotors exhibit a rapid autonomous motion with a maximum speed of 110.6 ± 0.2 μm/s under 808 nm laser irradiation with a density of 3.0 W/cm2. With the assistance of light-powered motion, the Au/Cu-CeO2@BSA nanomotors (ACCB Janus NMs) can effectively adhere to and mechanically perforate tumor cells, thereby causing the higher cellular uptake and significantly enhancing the tumor tissue permeability in the tumor microenvironment (TME). ACCB Janus NMs also exhibit high nanozyme activity that can catalyze the production of reactive oxygen species (ROS) to reduce the TME oxidative stress response. Meanwhile, the potential PA imaging capability of ACCB Janus NMs offer promise for early diagnosis of tumors due to the photothermal conversion efficiency of Au NPs. Therefore, the nanotherapeutic platform provides a new tool for effectively imaging of deep tumors site in vivo to achieve synergistic PTT/CDT and accurate diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.