Abstract
Chilli is a widely produced crop, highly valued for its capsaicin content, a key economic trait. Traditional wet chemistry methods for estimating capsaicin are time-taking and laborious, while non-destructive methods like NIRS coupled with chemometrics, offer efficient alternatives, simplifying and accelerating biochemical assessments. This study is the first to develop and validate and tested for applicability of NIRS-based prediction model for capsaicin content in Indian chilli germplasm using MPLS regression. Various mathematical treatments were performed, and the most suited model was selected based on high RSQexternal, RPD and lower SEP values in the external validation set, indicating strong prediction accuracy and minimal error. The model achieved high RSQexternal value of 0.808, RPD value of 2.088 and low SEP value of 3.415 for capsaicin content, demonstrating excellent prediction performance. A paired sample t-test p-value of 0.757 (p > 0.05) showed non-significant difference between wet lab and predicted values, confirming the model’s accuracy. The applicability of the model was validated on fresh harvest germplasm the following year, showing a higher reliability score of 0.949, further confirming model’s reliability. This model would aid in high-throughput, accurate screening of chilli germplasm for capsaicin, accelerating chilli crop improvement programs and the development of new high-capsaicin varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.