Abstract
Foodborne illness represents a significant health burden worldwide. While monitoring the freshness of food before consumption could significantly improve the current predicament, there is a lack of a simple system that one can use to accurately assess the freshness of their food. Currently, the most common practice for food quality determination is by visual or odor inspection which lacks objectivity, accuracy and precision. Near infrared (NIR) spectroscopic techniques can help address this problem by providing rapid and non-destructive means to estimate the freshness state of various foods based on the changes to their characteristic spectra in the NIR region. Recent advancements in the development of portable NIR spectrometers are also enabling the realization of this technique at the point-of-need. In this study, we have evaluated the feasibility of using NIR spectroscopy at the point-of-need to estimate the freshness of various foods including: beef sirloin, beef eyeround, pork sirloin, bass, salmon, corvina, tomato and watermelon. Using a commercial portable NIR spectrometer, we periodically scanned and collected NIR spectra from the food items that were stored at 4°C inside a refrigerator for up to 30 days. For these food items, we show that the NIR spectra can be classified by the foods’ aging day as well as by the levels of chemical/microbial indicators (i.e., thiobarbituric acid, volatile basic nitrogen and bacteria levels) with high accuracy, which represents high prospects of NIR spectroscopy for point-of-need freshness assessment of meat, fish, vegetables and fruits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.