Abstract

Surgical excision, chemotherapy, and radiotherapy are the main approaches used for treating melanoma. Unfortunately, surgical excision usually inevitably causes large area skin defects. In addition, chemotherapy and radiotherapy are often accompanied by adverse reactions and multi-drug resistance. To overcome these limitations, a near-infrared (NIR)- and pH-responsive injectable nanocomposite hydrogel was developed using sodium alginate-graft-dopamine (SD) and biomimetic polydopamine-Fe(III)-doxorubicin nanoparticles (PFD NPs) for treating melanoma and promoting skin regeneration. Firstly, the SD/PFD hydrogel can precisely deliver anti-cancer agents to the tumor site to reduce its loss and off-target toxicity. Then, PFD can convert light into heat energy under NIR irradiation to kill cancer cells. Meanwhile, doxorubicin can be administered continuously and controllably by NIR- and pH-responsive. Additionally, the SD/PFD hydrogel can also relieve tumor hypoxia by decomposing endogenous hydrogen peroxide (H2O2) into oxygen (O2). Therefore, photothermal, chemotherapy, and nanozyme synergetic therapy resulted in the tumor suppression. Specifically, the SA-based hydrogel can kill bacteria, scavenge reactive oxygen species, promote the proliferation and migration of cells, and significantly accelerate skin regeneration. Therefore, this study provides a safe and effective strategy for melanoma treatment and wound repair.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call