Abstract

Metallurgical and electrical properties of Nb and NbN films for use as Josephson junction electrodes and wiring layers are investigated. The crystallographic and superconducting properties necessary for Nb-based integrated circuit processes are clarified. Tunnel barrier structures of NbN-Nb oxide-NbN (Pb alloy) and Nb-Al oxide-Nb Josephson junctions have been analyzed and correlated with junction characteristics and critical current uniformity. It was found that the surface structure of a base electrode should be smooth to ensure that Josephson junctions have low leakage current and uniform critical current distribution. New types of Josephson junctions with artificial tunnel barriers such as amorphous Si or Mg oxide are reviewed. A variety of Josephson junction structures or processes have been developed for Nb-based Josephson integrated circuits in order to improve circuit performance. These include junction miniaturization, planarization, and stacked junction structures. These structures are mainly intended for Nb-Al oxide-Nb Josephson circuits. The Nb-Al oxide-Nb Josephson junction technology is by far the most advanced and has been used in logic and memory circuits, for example a 4-bit*4-bit parallel multiplier, a Josephson logic gate array, a 16-bit arithmetic logic unit, a 4-bit microprocessor, and 1-kb and 4-kb memory circuits.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call