Abstract
Significant interest in the electrocatalytic reduction of molecular nitrogen to ammonia (the nitrogen reduction reaction: NRR) has focused attention on transition metal carbides as possible electrocatalysts. However, a fundamental understanding of carbide surface structure/NRR reactivity relationships is sparse. Herein, electrochemistry, DFT-based calculations, and in situ photoemission studies demonstrate that NbC, deposited by magnetron sputter deposition, is active for NRR at pH 3.2 but only after immersion of an ambient-induced Nb2O5 surface layer in 0.3 M NaOH, which leaves Nb suboxides with niobium in intermediate formal oxidation states. Photoemission data, however, show that polarization to -1.3 V vs Ag/AgCl restores the Nb2O5 overlayer, correlating with electrochemical measurements showing inhibition of NRR activity under these conditions. In contrast, a similar treatment of a sputter-deposited TaC sample in 0.3 M NaOH fails to reduce the ambient-induced Ta2O5 surface layer, and TaC is inactive for NRR at potentials more positive than -1.0 V even though a significant cathodic current is observed. A TaC sample with surface oxide partially reduced by Ar ion sputtering in UHV prior to in situ transfer to UHV exhibits a restored Ta2O5 surface layer after electrochemical polarization to -1.0 V vs Ag/AgCl. The electrochemical and photoemission results are in accord with DFT-based calculations indicating greater N≡N bond activation for N2 bound end-on to Nb(IV) and Nb(III) sites than for N2 bound end-on to Nb(V) sites. Thus, theory and experiment demonstrate that with respect to NbC, the formation and stabilization of intermediate (non-d0) oxidation states for surface transition metal ions is critical for N≡N bond activation and NRR activity. Additionally, the Nb suboxide surface, formed by immersion in 0.3 M NaOH of ambient-exposed NbC, is shown to undergo reoxidation to catalytically inactive Nb2O5 at -1.3 V vs Ag/AgCl, possibly due to hydrolysis or other, as yet not understood, phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.