Abstract
The boreal forest holds the world's largest soil carbon (C) reservoir. A large portion of it is contained in a thick organic layer originating from the slow decay of bryophytes. Because a thick organic layer slows down tree growth, reduces forest productivity, and thereby reduces the potential wood supply, silvicultural treatments that aim to maintain or restore forest productivity after harvesting often involve mechanical site preparation. However, while these treatments can increase growth and C storage in trees, they can also lead to accelerated decomposition of the soil organic matter, reducing C storage. In this study, we assessed the nine-years effect of two silvicultural treatments on soil C dynamics in forested peatlands of northwestern Quebec, compared to unharvested controls: (1) cut with protection of regeneration and soils (CPRS; low soil disturbance, also called careful logging around advanced growth (CLAAG)), (2) CPRS followed by mechanical site preparation (CPRS + MSP, plowing; severe soil disturbance). The mass loss rate of three bryophytes (Pleurozium schreberi, Sphagnum capillifolium, and Sphagnum fuscum) was measured over two growing seasons together with soil organic carbon (SOC) stocks. We also studied the different effects of temperature, water table level, depth, and type of soil layer on mosses decomposition.We observed a significant influence of silvicultural treatments, bryophyte species, and soil layer type (fibric, mesic, humic and mineral) on bryophyte mass loss, which was higher in the CPRS + MSP treatment (21.6 ± 0.13 % standard error) than in control sites (9.5 ± 0.21 %); CPRS alone resulted in an intermediate mass loss of 11.6 ± 0.23 %, for Sphagnum mosses. Bryophyte mass loss was significantly higher in fibric than humic layer. SOC stocks in the uppermost organic soil layer (fibric) were lower in the CPRS + MSP group than in the control group, while the CPRS group was intermediate; however, differences were not statistically significant for the other soil layer and for total SOC. We conclude that while CPRS + MSP accelerates Sphagnum moss decomposition in the topsoil layer, it has limited impact on total soil C stocks that are detectable with stock change methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have