Abstract
We explore second-order systems of non-stiff initial-value problems (IVPs), particularly those cases where the first derivatives are absent. These types of problems are of significant interest and have applications in various domains, such as astronomy and physics. Runge–Kutta–Nyström (RKN) pairs stand out as highly effective methods of addressing these IVPs. In order to create a pair with eighth and sixth orders, we need to address a certain known set of equations concerning the coefficients. When constructing such pairs for use in double-precision arithmetic, we often need to meet various conditions. Primarily, we aim to maintain small coefficient magnitudes to prevent a loss of accuracy. Nevertheless, in the context of quadruple precision, we can tolerate larger coefficients. This flexibility enables us to establish pairs with eighth and sixth orders that exhibit significantly reduced truncation errors. Traditionally, these pairs are constructed to go through eight stages per step. Here, we propose using nine stages per step. Then we have available more coefficients in order to further reduce truncation errors. As a result, we construct a novel pair that, as anticipated, achieves superior performance compared to equivalent-order pairs in various significant problem scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.