Abstract

Designing highly efficient and stable electrocatalysts for hydrogen evolution reaction (HER), particularly in seawater, still remains a challenging task. Herein, the unique heterostructures composed of 1D NiMo cores and 2D C3N5 shells (NiMo@C3N5) are rationally designed and demonstrated as the robust HER catalysts in both alkaline electrolytes and natural seawater, where the carbon-based shell can effectively protect the catalyst core from seawater poisoning. Based on the experimental investigation and density functional theory calculation, multiple electronic transmission channels were found to establish at the interface between NiMo cores and C3N5 shells, thus providing efficiently optimized HER pathways to achieve minimized overpotential with a reduced energy barrier of the rate-determining step. More importantly, the NiMo@C3N5 hybrids exhibit stable HER performance with a high Faradaic efficiency of 94.8% in seawater, which is superior to that of commercial Pt/C. All these results can evidently highlight a feasible strategy to develop high-performance HER electrocatalysts via interface engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.