Abstract

Abstract PURPOSE Multi-parametric MRI based radiomic signatures have highlighted the promise of artificial intelligence (AI) in neuro-oncology. However, inter-institution heterogeneity hinders generalization to data from unseen clinical institutions. To this end, we formulated the ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium for glioblastoma. Here, we seek non-invasive generalizable radiomic signatures from routine clinically-acquired MRI for prognostic stratification of glioblastoma patients. METHODS We identified a retrospective cohort of 606 patients with near/gross total tumor resection ( >90%), from 13 geographically-diverse institutions. All pre-operative structural MRI scans (T1,T1-Gd,T2,T2-FLAIR) were aligned to a common anatomical atlas. An automatic algorithm segmented the whole tumors (WTs) into 3 sub-compartments, i.e., enhancing (ET), necrotic core (NC), and peritumoral T2-FLAIR signal abnormality (ED). The combination of ET+NC defines the tumor core (TC). Quantitative radiomic features were extracted to generate our AI model to stratify patients into short- (< 14mts) and long-survivors ( >14mts). The model trained on 276 patients from a single institution was independently validated on 330 unseen patients from 12 left-out institutions, using the area-under-the-receiver-operating-characteristic-curve (AUC). RESULTS Each feature individually offered certain (limited but reproducible) value for identifying short-survivors: 1) TC closer to lateral ventricles (AUC=0.62); 2) larger ET/brain (AUC=0.61); 3) larger TC/brain (AUC=0.59); 4) larger WT/brain (AUC=0.55); 5) larger ET/WT (AUC=0.59); 6) smaller ED/WT (AUC=0.57); 7) larger ventricle deformations (AUC=0.6). Integrating all features and age, through a multivariate AI model, resulted in higher accuracy (AUC=0.7; 95% C.I.,0.64-0.77). CONCLUSION Prognostic stratification using basic radiomic features is highly reproducible across diverse institutions and patient populations. Multivariate integration yields relatively more accurate and generalizable radiomic signatures, across institutions. Our results offer promise for generalizable non-invasive in vivo signatures of survival prediction in patients with glioblastoma. Extracted features from clinically-acquired imaging, renders these signatures easier for clinical translation. Large-scale evaluation could contribute to improving patient management and treatment planning. *Indicates equal authorship.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.