Abstract

The Ki-67 proliferation index (PI) reflects the proliferation of cells. However, the conventional methods for the acquisition of the Ki-67 PI, such as surgery and biopsy, are generally invasive. This study investigated a potential noninvasive method of predicting the Ki-67 PI in patients with lung adenocarcinoma presenting with subsolid nodules. This retrospective study enrolled 153 patients who presented with pulmonary adenocarcinoma appearing as subsolid nodules (SSNs) on computed tomography (CT) images between January 2015 and December 2018. Presence of LUAD with SSNs was confirmed by histopathology. Of these participants, 107 patients were from institution 1 and were divided into a training cohort and an internal validation cohort in a 7:3 ratio. The other 46 patients were from institution 2 and were enrolled as an external validation cohort. All patients underwent conventional CT scans with thin-slice (≤1.25 mm) reconstruction, and 1,316 quantitative radiomic features were extracted from the CT images for each nodule. The minimum redundancy maximum relevance and the least absolute shrinkage and selection operator were used for feature selection, and the radiomics signature was constructed based on these selected features. Clinical features were examined using univariate logistic regression analysis. The nomogram was developed based on the radiomics signature and the independent clinical risk factors. The Delong test and t test were employed for statistical analysis. The performance of different models was assessed by the receiver operating characteristic (ROC) curve. The diameter of the nodules [odds ratio (OR) =1.17; P=0.003] was identified as an independent predictive parameter. Both the radiomics signature and the nomogram suggested a good predictive probability for Ki-67 expression. For the radiomics signature, the area under the ROC curve (AUC) for the training cohort, the internal validation cohort, and the external validation cohort was 0.86 [95% confidence interval (CI): 0.77 to 0.95], 0.81 (95% CI: 0.64 to 0.98), and 0.77 (95% CI: 0.62 to 0.91), respectively. For the nomogram, the AUC for the training cohort, the internal validation cohort, and the external validation cohort was 0.86 (95% CI: 0.77 to 0.95), 0.80 (95% CI: 0.64 to 0.97), and 0.79 (95% CI: 0.65 to 0.94), respectively. There were no statistical differences in the AUCs between the radiomics signature and the radiomic nomogram in the training cohort or the validation cohorts (all P>0.05). The nomogram provides a novel strategy for determining the Ki-67 PI in predicting the proliferation of subsolid nodules, which may be beneficial for the management of patients with SSNs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.