Abstract

We consider the correspondence between nilmanifolds and Lie algebras with rational basis, and we dene spectral sequences converging to the respective cohomologies. The E2 terms of the spectral sequences are the cohomolgies of isomorphic graded Lie algebras. Each nilmanifold gives rise to a Lie algebra with rational basis. We give an example which illustrates that not all such Lie algebras correspond to nilmanifolds. Given a Lie algebra with rational basis we give a construction that produces a nilmanifold with Lie algebra that is rationally equivalent to the starting Lie algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.