Abstract

Lieʼs Third Theorem, asserting that each finite-dimensional Lie algebra is the Lie algebra of a Lie group, fails in infinite dimensions. The modern account on this phenomenon is the integration problem for central extensions of infinite-dimensional Lie algebras, which in turn is phrased in terms of an integration procedure for Lie algebra cocycles. This paper remedies the obstructions for integrating cocycles and central extensions from Lie algebras to Lie groups by generalising the integrating objects. Those objects obey the maximal coherence that one can expect. Moreover, we show that they are the universal ones for the integration problem. The main application of this result is that a Mackey-complete locally exponential Lie algebra (e.g., a Banach–Lie algebra) integrates to a Lie 2-group in the sense that there is a natural Lie functor from certain Lie 2-groups to Lie algebras, sending the integrating Lie 2-group to an isomorphic Lie algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.