Abstract
Based on symmetry analyses and first-principles calculations, we report the predictions of topological fermions and superconductivity in Ni-intercalated transition metal chalcogenide NiTe. The self-intercalation of Ni introduces nonsymmorphic symmetry operations, protecting a pair of Dirac points and three intersecting Dirac nodal lines near Fermi energy level (EF), which generate spin-textured surface states across EF. Moreover, the Ni-intercalation strongly enhances electron–phonon coupling in NiTe and makes it an anisotropic Bardeen–Cooper–Schrieffer superconductor with a full superconducting gap and a critical temperature Tc ∼1.5 K. The coexistence of topological surface states and superconductivity implies that NiTe is a potential material platform for exploring topological superconductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.