Abstract

Recently, the doping of topological insulators has attracted significant interest as a potential route towards topological superconductivity. Because many experimental techniques lack sufficient surface sensitivity, however, definite proof of the coexistence of topological surface states and surface superconductivity is still outstanding. Here we report on highly surface sensitive scanning tunneling microscopy and spectroscopy experiments performed on Tl-doped ${\mathrm{Bi}}_{2}{\mathrm{Te}}_{3}$, a three-dimensional topological insulator which becomes superconducting in the bulk at ${T}_{\mathrm{C}}=2.3$ K. Landau level spectroscopy as well as quasiparticle interference mapping clearly demonstrated the presence of a topological surface state with a Dirac point energy ${E}_{\mathrm{D}}=\ensuremath{-}(118\ifmmode\pm\else\textpm\fi{}1)$ meV and a Dirac velocity ${v}_{\mathrm{D}}=(4.7\ifmmode\pm\else\textpm\fi{}0.1)\ifmmode\times\else\texttimes\fi{}{10}^{5}$ m/s. Tunneling spectra often show a superconducting gap, but temperature- and field-dependent measurements show that both ${T}_{\mathrm{C}}$ and ${\ensuremath{\mu}}_{0}{H}_{\mathrm{C}}$ strongly deviate from the corresponding bulk values. Furthermore, in spite of a critical field value which clearly points to type-II superconductivity, no Abrikosov lattice could be observed. Experiments performed on normal-metallic Ag(111) prove that the gapped spectrum is caused only by superconducting tips, probably caused by a gentle crash with the sample surface during approach. Nearly identical results were found for the intrinsically $n$-type compound Nb-doped ${\mathrm{Bi}}_{2}{\mathrm{Se}}_{3}$. Our results suggest that the superconductivity in superconducting-doped V-VI topological insulators does not extend to the surface where the topological surface state is located.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call