Abstract
Robust and long-lasting non-precious metal electrocatalysts are essential to achieve sustainable hydrogen production. In this work, we synthesized Co3O4@NiCu by electrodepositing NiCu nanoclusters onto Co3O4 nanowire arrays that were formed in situ on nickel foam. The introduction of NiCu nanoclusters altered the inherent electronic structure of Co3O4, significantly increasing the exposure of active sites and enhancing endogenous electrocatalytic activity. Co3O4@NiCu exhibited overpotentials of only 20 and 73 mV, respectively, at 10 mA cm−2 current densities in alkaline and neutral media. These values were equivalent to those of commercial Pt catalysts. Finally, the electron accumulation effect at the Co3O4@NiCu, along with a negative shift in the d-band center, is finally revealed by theoretical calculations. Hydrogen adsorption on consequent electron-rich Cu sites was effectively weakened, leading to a robust catalytic activity for the hydrogen evolution reaction (HER). Overall, this study proposes a practical strategy for creating efficient HER electrocatalysts in both alkaline and neutral media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.