Abstract
BackgroundNumerous neurological diseases involving neuroinflammation, particularly microglia, contribute to neuronal death. Ferroptosis is implicated in various diseases characterized by neuronal injury. Studies showed that nicotinamide mononucleotide (NMN) inhibits both neuroinflammation and ferroptosis. However, the mechanisms of NMN in both ferroptosis and neuroinflammation remain unclear. We aimed to explore the effects of NMN on neuroinflammation and the susceptibility of microglia to ferroptosis. MethodsFerroptosis markers in macroglia exposed to lipopolysaccharides (LPS) were analyzed using CCK8, flow cytometry, ELISA, and quantitative RT-PCR. The effects of NMN on LPS-induced ferroptosis in microglia were evaluated through flow cytometry, western blot, and immunofluorescence staining. RT-PCR analysis assessed the inflammatory cytokine production of microglia subjected to Ferrostatin-1-regulated ferroptosis. RNA sequencing elucidated the underlying mechanism of NMN-involved microglia ferroptosis under LPS induction. In BV2 microglia, an inhibitor of GPX4, RSL3, was employed to suppress GPX4 expression. Intracerebroventricular injection of LPS was performed to evaluate neuroinflammation and microglia activation in vivo. ResultsNMN effectively rescued LPS-induced ferroptosis and improved cell viability in microglia. Co-administration of NMN and ferrostatin-1 significantly reduced proinflammatory cytokine production in microglia following the introduction of LPS stimuli. Mechanistically, NMN facilitated glutathione (GSH) production, and enhanced resistance to lipid peroxidation occurred in a manner dependent on GPX4, repressing cytokine transcription and protecting cells from ferroptosis. RNA sequencing elucidated the underlying mechanism of NMN-associated microglia ferroptosis under LPS induction. Furthermore, simultaneous injection of NMN ameliorated LPS-induced ferroptosis and neuroinflammation in mouse brains. The data from the present study indicated that NMN enhances GPX4-mediated ferroptosis defense against LPS-induced ferroptosis in microglia by recruiting GSH, thereby inhibiting neuroinflammation. ConclusionTherapeutic approaches to effectively target ferroptosis in diseases using NMN, consideration should be given to both its anti-ferroptosis and anti-inflammatory effects to attain optimal outcomes, presenting promising strategies for treating neuroinflammation-related diseases or disorders.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have