Abstract

Bupivacaine is one of the most toxic local anesthetics but the mechanisms underlying its neurotoxicity are still unclear. Intracellular nicotinamide adenine dinucleotide (NAD(+)) depletion has been demonstrated to play an essential role in neuronal injury. In the present study, we investigated whether intracellular NAD(+) depletion contributes to bupivacaine-induced neuronal injury and whether NAD(+) repletion attenuates the injury in SH-SY5Y cells. First, we evaluated the intracellular NAD(+) content after bupivacaine exposure. We also examined the cellular NAD(+) level after pretreatment with exogenous NAD(+). We next determined cell viability and the apoptosis rate after bupivacaine treatment in the presence or absence of NAD(+) incubation. Finally, cell injuries such as nuclear injury, reactive oxygen species (ROS) production, and mitochondrial depolarization were detected after bupivacaine treatment with or without NAD(+) pretreatment. Bupivacaine caused intracellular NAD(+) depletion in a time- and concentration-dependent manner. Cellular NAD(+) replenishment prevented cell death and apoptosis induced by bupivacaine. Importantly, exogenous NAD(+) attenuated bupivacaine-induced nuclear injury, ROS production, and mitochondrial depolarization. Our results suggest that NAD(+) depletion is necessary for bupivacaine-induced neuronal necrosis and apoptosis, and that NAD(+) repletion attenuates neurotoxicity resulting from bupivacaine-treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call