Abstract
Objective: To investigate the role of neuroglobin (NGB) in oxygen-glucose deprivation and reoxygenation (OGD/R) induced mitochondrial depolarization and reactive oxygen species (ROS)production in a human neuroblastoma cell line (SH-SY5Y). Methods: SH-SY5Y cells were transfected with lentivirus to establish a stable cell line of NGB knockdown (KD). After treated with OGD/R, cells were collected at different time points to analyze NGB mRNA and protein levels. Furthermore, cells were stained with JC-1 and DCFH-DA to evaluate mitochondrial depolarization and ROS production by inverted fluorescence microscope. Also, to determine the neurotoxicity, we measured the lactate dehydrogenase(LDH)level in the cell culture medium. Results: After the treatment of OGD/R, the NGB mRNA and protein started to elevate and peak at 4 h and 8 h (2.04±0.35 fold, 1.69±0.18 fold). Compared with the vector group, NGB KD group had much more mitochondrial depolarization [JC-1 red/green (1.10±0.10) vs (1.46±0.11), P<0.05] and ROS production [DCFH-DA fluorescence (36.30±5.32) vs (16.26±2.97), P<0.05]. Furthermore, NGB KD groups had a higher level of LDH release [(63.42±6.14)%vs (49.65±5.09)%, P<0.05]. Conclusions: NGB plays an important role in the homeostasis of mitochondria. Knockdown of NGB results in increased mitochondrial depolarization, ROS production and neurotoxicity under hypoxia circumstances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.