Abstract

Nicosulfuron is a sulfonylurea family herbicide which is commonly applied together with the triazine herbicide atrazine in agricultural practice. However, whether nicosulfuron can influence the biodegradation of atrazine is unclear. Therefore, the influence of nicosulfuron on atrazine removal as well as on cell viability and transcription of atrazine chlorohydrolase gene (trzN) in Arthrobacter sp. DNS10 was investigated in this study. Our results demonstrated that 76.0% of atrazine was degraded in the absence of nicosulfuron after 48h of culture, whereas 63.9, 49.1 and 42.6% was degraded in the presence of 1, 5, and 10mg/L of nicosulfuron, respectively. Nicosulfuron also induced an increase in the level of intracellular reactive oxygen species (ROS), thereby damaging the cell membrane integrity and inhibiting the growth of the strain DNS10. Flow cytometry analysis revealed that the cell viability of strain DNS10 decreased with an increase in nicosulfuron concentration. The transcription of trzN in strain DNS10 exposed to the three described levels of nicosulfuron was 0.99, 0.72 and 0.52 times, respectively, that without nicosulfuron. In brief, nicosulfuron could inhibit atrazine removal efficiency by strain DNS10 by inducing the over-production of ROS which ultimately enhances the population of membrane-damaged cells, as well as reducing cell viability and trzN transcription. The outcomes of the present study provide new insights into the mechanism of nicosulfuron inhibition on atrazine biodegradation by strain DNS10.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call