Abstract

AbstractFor the advancement of electrochemical energy conversion and storage technologies, bifunctional electrocatalysts are crucial for efficiently driving both the oxygen evolution (OER) and reduction reactions (ORR). Cobalt‐based spinel oxides are a class of promising bifunctional electrocatalysts. However their low electrical conductivity and stability may hinder further improvement. A novel composite material composed of NiCo2O4 nanoparticles integrated with emerging two dimensional MXene nanosheets (NiCo2O4/MXene) was developed. The successful integration of NiCo2O4 with MXene brings about a number of attractive structural features. This includes synergistic effects between NiCo2O4 and MXene, highly accessible surface areas, complete exposure of numerous active sites, and excellent electronic conductivity, all of which collectively contribute to the desirability of composite material for OER and ORR. The synthesized NiCo2O4/MXene composite showed extraordinary OER electrocatalytic activity with a lower overpotential of 360 mV at a current density of 10 mA/cm2, and a small Tafel slope of 64 mV/dec compared to NiCo2O4, MXene and NiCo2O4+MXene (physically mixed). Additionally, NiCo2O4/MXene displays an ORR limiting current density of −4 mA/cm2 and exhibited highest onset potential and half wave potential of 0.92 V and 0.72 V vs. RHE, respectively, for the ORR in alkaline media compared to NiCo2O4, MXene and NiCo2O4+MXene (physically mixed).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.