Abstract
The mononuclear nickel(II) complexes with the first-generation quinolone antibacterial agent oxolinic acid in the presence or absence of nitrogen-donor heterocyclic ligands (2,2'-bipyridine, 1,10-phenanthroline or pyridine) have been synthesized and characterized. The experimental data suggest that oxolinic acid acts as deprotonated bidentate ligand coordinated to Ni(II) ion through the ketone and carboxylato oxygens. The crystal structure of (2,2'-bipyridine)bis(oxolinato) nickel(II), 2 has been determined by X-ray crystallography. The cyclic voltammograms of the complexes recorded in dmso solution and in 1/2 dmso/buffer (containing 150mM NaCl and 15mM trisodium citrate at pH 7.0) solution have shown that in the presence of calf-thymus DNA (CT DNA) they can bind to CT DNA by the intercalative binding mode. UV study of the interaction of the complexes with CT DNA has shown that the complexes bind to CT DNA and bis(aqua)bis(oxolinato) nickel(II) exhibits the highest binding constant to CT DNA. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have