Abstract

Several methods such as drop-casting, electrophoretic and chemical vapour depositions have shown the successful deposition of nanomaterials such as graphene oxide, cerium oxide, etc. on metals for various applications such as energy storage, and corrosion protection due to their large surface area and barrier formation. However, these films despite their strong barrier property have been less effective in the area of corrosion protection due to porosity and poor adherence. Here we describe an environmentally benign nickel-zinc tungstate (NiWO4-ZnWO4) nanocomposite with great adhesion and reduced porosity due to improved adsorption sites and film ordering inspired by deoxyribonucleic acid (DNA). The synthesis of the newly designed mixed-metal oxide was done via a simple wet-chemical process in the presence of DNA and in-absence of DNA. Electrochemical analyses confirmed improved corrosion protection of Cu by approximately two orders of magnitude by using nickel-zinc tungstate with DNA compared to only the sample without DNA and the blank system (without any inhibitor).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call