Abstract
Currently, nanomaterials are an important class of materials in the field of synthesis of efficient and selective catalysts with desired properties due to their unique physical and chemical properties. The presence of nanosized particles of transition metals undoubtedly improves the course of the hydrodechlorination of polychlorinated biphenyls (PCBs) and makes it possible to reduce the content of the noble metal in the catalyst. In order to obtain active and stable heterogeneous catalysts for the neutralization of persistent organic pollutants (POPs), the correct choice of carrier and method of catalyst synthesis is required. In this work, the synthesis of a nickel nanocatalyst was carried out using the wet impregnation method for the hydrodechlorination of PCBs. Commercial activated carbon grade BAU-A was pre-modified with hydrochloric acid and used as a carrier (ACm) of the catalyst. Using modern physical and chemical methods, the main properties of the synthesized nanocatalyst were investigated. The IR spectroscopy has established that the carboxyl and carbonyl groups of ACm are the main functional groups that fix nickel in the bulk of the carrier. The nickel nanocatalyst has a developed surface, where nickel nanoparticles are deposited in micro- and mesopores of the carrier. The degree of conversion of 2,2',3,3',4-pentachlorobiphenyl is 84.21%, which indicates the catalytic activity of nickel nanocatalysts with respect to POPs.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have