Abstract

AbstractAn original way to perform the exsolution of Ni nanoparticles on a ceramic support was explored for the development of methane steam reforming catalyst in SOFC anode conditions. The n=2 Ruddlesden‐Popper (RP) phase La1.5Sr1.5Mn1.5Ni0.5O7±δ has been synthesized by the Pechini method and subsequently reduced with an H2‐N2 mixture at different temperatures and reducing times to induce the formation of two phases: LaSrMnO4 (n=1 RP) decorated with metallic Ni nanoparticles. Preliminary measurements of catalytic behavior for the steam reforming have been carried out in a reduction‐reaction process with a mixture of 82 mol %CH4, 18 mol %N2 and low steam to carbon ratio (S/C=0.15). The catalyst exhibits a selectivity for CO production (0.97), 14.60 mol % CH4 conversion and around 24.19 mol % H2 production. Such catalytic behavior was maintained for more than 4 h, with a constant rate of hydrogen production and CH4 conversion rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.