Abstract
Nanosized nickel-substituted zinc aluminate oxides were obtained by the gradual insertion of nickel cations within the zinc aluminate lattice, using starch as active ingredient. The obtained (Ni x Zn1−x Al2)-starch (x = 0.1, 0.2, 0.4, 0.6, 0.8, 1) gel precursors were characterized through infrared spectroscopy and thermal analysis. The thermal behavior of the precursors are influenced by the nickel content, the DTA curves for the richer nickel samples revealing stronger, faster and overlapping exothermic reactions, that can be completed at lower temperatures. The corresponding spinelic oxides were obtained after calcination treatments at 800 °C and analyzed by means of NIR–UV–Vis spectroscopy, XRD measurements, SEM, TEM, and HRTEM investigations. The spinelic structure for all oxide samples is confirmed by XRD analysis, although small amounts of NiO cannot be neglected. TEM/HRTEM analysis revealed mesopores embedded in plate-like large (68.8 nm) particles of Ni0.2Zn0.8Al2O4 sample and smaller (15.7 nm) uniform equiaxial particles, with a more pronounced tendency of agglomeration for Ni0.8Zn0.2Al2O4 oxide. A formation mechanism for Ni0.2Zn0.8Al2O4 oxides was proposed based on DTA/TG, XRD, and SEM analyses. NIR–UV–Vis spectra for Ni x Zn1−x Al2O4 showed a significant presence of tetrahedral nickel cations that augments with nickel concentration increase. CIE-L * a * b * color parameters shown a variation of the lightness and also of the green and blue color components with x, the best color characteristics being obtained for x = 0.6. The oxides with a substitution degree x = 0.2 and 0.8 tested in the oxidative coupled of methane reaction (OCM) showed positive catalytic activity and selectivity due to an interesting synergetic effect of Zn(II) and Ni(II) ions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have