Abstract
Nickel compounds are widely used in industries and daily life as important industrial products. Long-term exposure to nickel compounds has been associated with increased incidence and poor prognosis of lung cancer. However, the molecular mechanism by which exposure to nickel compounds induces the malignant phenotype of lung cancer cells remains unclear. In this study, we confirmed that nickel chloride (NiCl2) exposure promotes invasion and metastasis through IL-6/STAT3 both in vitro and vivo. Mechanistically, we found that NiCl2 mediated the transcriptional regulation of E3 ubiquitin ligase TRIM31 by SATAT3 phosphorylation, and promoted its up-regulation. Overexpression TRIM31 is an independent risk factor for lung cancer patients, and it promotes the invasion and metastasis of lung cancer cells. In addition, E3 ubiquitination ligase TRIM31 binds to its substrate TP53 protein in the RING region and accelerates TP53 protein ubiquitination and degradation. Functional recovery experiments showed that NiCl2 exposure promotes the invasion and metastasis ability of lung cancer and ubiquitination-mediated degradation of TP53 protein through the STAT3/TRIM31 axis. These findings reveal the role and mechanism of NiCl2 in lung cancer progression, indicating that STAT3 and TRIM31 may be promising targets for the treatment of lung cancer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have